
the smart approach to instrumentation™

®

IOtech, Inc. 25971 Cannon Road Cleveland, Ohio 44146 (440) 439-4091 Fax (440) 439-4093

General IEEE 488

Application Note #6

IEEE 488 Troubleshooting
IEEE 488 Systems and Software

To efficiently diagnose, troubleshoot and verify IEEE
488 systems, you should first have some basic knowl-
edge of the IEEE bus. Since the hardware portion of
the IEEE standard is rigorous and stable, most of the
problems you will encounter during the system
integration process will be in the application soft-
ware. This note contains a brief IEEE tutorial fol-
lowed by troubleshooting techniques.

The IEEE 488 Bus Standard
Addresses
Each device on the IEEE 488 bus has a unique
address — even the controller. The addresses range
from 0 to 30. Addresses are the means by which
controllers select specific instruments. To send
data to a device, the controller must both address
itself to talk and address the device to listen.

Commands
IEEE 488 recognizes two types of commands: De-
vice-Dependent Commands (DDCs) and IEEE 488-
specific commands. DDC's such as “R0F0T2X” are
simply data sent from one device to another (in this
instance from the controller to an instrument). IEEE
488-specific commands come in two forms; multil-
ine commands and uniline commands. Multiline
commands are sent on the data bus lines; uniline
commands are individual signals on the bus.

The uniline signals are the easiest to decipher because
each signal has one specific purpose. All but two of
these signals are issued exclusively by the controller.

Uniline Commands
• Interface Clear (IFC) is the most dramatic uniline

command. It stops all activities on the bus and
returns the interface of every device to a quiescent
state.

• Remote Enable (REN) informs the devices on the
bus that the IEEE interface is active. It does not
lock out an instrument’s front panel.

• Attention (ATN) is the signal that differentiates
data from multiline commands on the data bus.
When ATN is asserted by the controller, the bits
on the data bus are actually multiline commands
being issued to all of the devices on the bus.

• End Or Identify (EOI) can be issued by any device
talking on the bus. Talkers use EOI to notify
listeners that the end of the transmission has
taken place.

• Service Request (SRQ) can be issued by any device on
the bus. It allows devices on the bus to interrupt, or
alert, the controller to an internal situation that
needs servicing (e.g. “my buffer is full,” “I’ve en-
countered an error,” “my trigger has been satisfied”).

Multiline Commands
Now that you have seen the uniline commands and
have a sense for their application, we’ll discuss
multiline commands. Remember, multiline com-
mands are transmitted from the controller to the
devices on the data bus. The devices know that they
are not data because the ATN line is asserted. When
ATN is asserted by the controller all of the devices
must listen to the commands.

Multiline commands serve several functions, most
notably to address instruments to talk or listen. To
address a device to listen, the controller will assert ATN
and place the listen address of the selected device on
the data bus. There are 31 listen addresses. These are
called the Listen Address Group (LAG). A similar pro-
cess is used for the Talk Address Group (TAG).

Most IEEE drivers, including IOtech’s Driver488 for
our line of IEEE controllers, have high level commands
that perform several elemental IEEE 488 operations. In
the IOtech Driver488 manual, every command expla-
nation contains a field called BUS STATES. In BUS
STATES, a complete explanation of what is happening
on the bus is displayed. For example, let’s examine
IOtech’s Driver488 command ENTER, which simply
gets one reading from a specified device:

BUS STATES:
ATN•UNL, MLA, TAG, *ATN, data..., ATN

the smart approach to instrumentation™

®

IOtech, Inc. 25971 Cannon Road Cleveland, Ohio 44146 (440) 439-4091 Fax (440) 439-4093

First, this indicates that ATN is asserted. Next, the multiline
command UNListen (UNL) instructs all devices that were in the
listen state to exit that state. The controller then issues My
Listen Address (MLA), its own address in the listen address
group, and issues the Talk Address Group (TAG) for the specified
device. Next, it unasserts ATN, which notifies the addressed
device that it may now transmit its data. Finally, after the data
has been sent (perhaps ending with an EOI), the controller once
again asserts ATN.

Analyzing the IEEE Bus
The simplest way to decipher the controller’s operations and the
reponse of the instruments, regardless of what software or
hardware you are using, is with an IEEE analyzer. Analyzer488
from IOtech allows the programmer to view all of the transac-
tions on the bus in real time or to record them into its 32K non-
volatile transaction buffer for later inspection.

The following example problems are all diagnosed using the
Analyzer488. Analyzer488 can be operated as a portable bench-
top analyzer from its easy to use keypad, or from the included
Analyst488 PC and PS/2 software. Analyzer488 allows the events
on the IEEE bus to be monitored, stored and analyzed. It can also
be used to control devices on the bus for exercising and verifying
instrument operation. The Analyzer488 will automatically trans-
late the state of the data bus and control lines into easy to read
IEEE messages or ASCII equivalents like SPE, TAG16, CR, and LF.
Along with its large capture buffer, Analyzer488 contains a
comprehensive set of trigger features that allow the desired
group of transactions to be easily pinpointed and identified.

Common Problems and Solutions
Occasionally systems will encounter problems due to the inter-
action of several devices in the system. These are among the
most difficult problems to debug. You should connect an
Analyzer488 and let it run while the application is processing.
Recording the bus transactions as they occur and inspecting the
transactions one at a time will usually allow you to diagnose
these types of problems rather quickly.

Often the problems encountered in a system are due to interac-
tions between one device and the controller. Here is a list of
common symptoms and their suggested solutions:

“I get a time-out error whenever I try to send device-dependent
commands to my instrument.”

The first thing you should check is the setting of IEEE addresses.
Every device on the bus must have a unique address between 0 and
30. When sending Device-Dependent Commands (DDCs) to an
instrument to change its state or operating mode, the device will
first be addressed to listen, then the data will be sent. If the device

has TALK and LISTEN indicators on its front panel, you can tell
immediately if the address used by the controller matches the
actual address of the instrument. If the LISTEN indicator does not
come on when sending commands to the device, you are probably
using the wrong address for that device.

As we mentioned in the tutorial section of this note, when the
ATN line is asserted by the controller all of the instruments on
the bus will handshake with, and accept data from, the control-
ler. After the time-out is received, step through the transactions
recorded by the Analyzer488. If no instrument addressing com-
mands such as Listen Address Group 16 (LAG16) were recorded,
your instrument is probably off or broken, or the cable is
disconnected. Regardless of the present state of the instrument,
it should handshake (accept data) when the ATN line is asserted.
If the addressing commands were successfully recorded on the
analyzer, step through the transactions until the ATN line is
unasserted. If there are no more recorded transactions, then no
instrument was placed in the Listen mode. The controller had
no one to handshake with so it “timed-out.” Your instrument is
probably set to the wrong address.

“At certain points in my program, the system stops and I
receive a time-out error.”

If portions of your program are operating correctly, then you
can be certain that your addresses are set correctly. If you
encounter a time-out error in your program after other instru-
ment tasks have been completed successfully, you may have
encountered an instrument-readiness problem.

IEEE interfaces and software like IOtech’s Personal488 operate
very rapidly and can sometimes out-run the instrument they are
controlling. For most instruments, data requests are performed
in two steps: sending the necessary setup or inquiry commands
via DDCs, then addressing the device to Talk. It is possible to
issue the necessary commands to request the data from the
instrument and then address it to Talk long before it is prepared
to supply the requested data. Many instruments will simply
pause the bus until they have prepared the data to send.
However, other instruments react poorly by “hanging up.”

To check for this “outracing” condition, place the Analyzer488
into the Slow Handshake mode. This will effectively slow the
transaction speed of the bus to a rate set by the Analyzer488. If
the data request takes place successfully, it is probably an
“outracing” condition.

“My instrument seems unaffected by the commands I send to it.”

If you have already made certain that you are sending the
commands to the right instrument address, you may have left
off a crucial piece of information that instructs the instrument
to process the commands.

the smart approach to instrumentation™

®

IOtech, Inc. 25971 Cannon Road Cleveland, Ohio 44146 (440) 439-4091 Fax (440) 439-4093

IEEE systems usually use data delimiters called terminators. A
Talker will inform a Listener that the data string has come to an
end by appending a predefined terminator to the end of its data
string. Although terminators are issued solely by the talking
device, the listening device(s) must know what terminator to
expect. Usually IEEE instruments will issue a carriage return
(CR) and a line feed (LF) as their terminator. Some instruments
will not process the incoming command string until they detect
the proper terminator. You should step through the transac-
tions captured by the Analyzer488 to verify the transmission of
the terminator, then make certain that it agrees with the
terminator expected by your instrument.

Some instruments have a DDC which instructs the instrument
to process all of the previously received commands. This EX-
ECUTE command (typically a character like ‘X’) allows a pro-
grammer to send several commands to an instrument in any
order over any length of time and then execute them all
simultaneously within the instrument. If the EXECUTE DDC is
not sent, the state of the instrument will not change. It will react
as if the commands were never received.

“When I ask for data, nothing is returned.”

This could be an address or terminator problem like the ones
discussed above. See the previous sections to diagnose these problems.

Not all instruments are ready to supply data whenever you ask.
Some instruments have nothing to say until they are commanded
to acquire or generate data. Some data acquisition instruments
have triggering features which allow the instrument to collect and
transmit data only after a specified event has occurred. A typical
multimeter might have a default trigger of TRIGGER ON TALK
which would enable the multimeter to take a reading every time
the controller addressed it to Talk. If the same multimeter was set
to TRIGGER ON GET, no reading would be available until the
controller issued a Group Execute Trigger.

If the device has no data to give, the Analyzer488 will show that
the controller has been addressed to Listen and the device was
addressed to Talk and then the process stopped. The handshake
indicators show that Not Ready For Data (NRFD) was unasserted
by the controller but the instrument never asserted DAta Valid
(DAV). Make certain that your device has data to transmit before
you ask it for some.

IOtech’s Driver488 has the capability of assigning a time-out value
to the system. If an instrument does not respond within the
specified time-out, the process is aborted. In some instances, an
instrument may be unable to respond within the specified time-
out period and the time-out period will have to be increased.

“When I ask for data, bad data is returned.”

Many times the variability of data formats of an instrument will
cause problems. Devices can transmit data in binary, ASCII, BCD,
packed BCD, or anything else that will fit into 8 bits. Data
terminators can be EOI, a byte count, or imbedded characters like
CR LF. Data can be sent with prefixes, suffixes, or full headers.
IOtech’s Driver488 can account for all of these parameters, but
some other drivers may not allow this level of flexibility.

When using higher level software packages, the problem of data
formats may be impossible to overcome. Usually, menu-driven
and turnkey packages go to great lengths to hide the IEEE bus from
the operator. The documentation, therefore, makes no attempt to
inform the operator of what is actually happening on the bus.

You may encounter a problem if your instrument transmits data
in a format that is not recognized by your software package.
Check your instrument manual for data format characteristics.
Does your instrument transmit non-numeric prefixes or suf-
fixes; is the data in binary or ASCII? Some software drivers will
automatically throw away any non-numerics. Others do not.
Even if your software throws the non-numerics away, you may
encounter problems with instruments that transmit numbers
like channel tags in their data prefix.

Most instruments, including IOtech’s ADC488 analog to digital
data acquisition instrument, can be programmed to adjust their
data format for software compatibility. Analyzer488 allows you to
quickly inspect the data being transmitted by your instrument,
enabling you to make the proper adjustments in your software.

“An SRQ from an instrument sometimes causes a catastrophe.”

The asynchronous nature of instrument interrupts can some-
times cause elusive problems. The best way to attack a problem
like this is to start the Analyzer488 recording and just let it and
the system run. Analyzer488 has a large 32K transaction buffer
that is configured in a circular fashion. After 32K transactions
have been recorded, new transactions will overwrite the oldest
transactions. There is a very high probability that the events
leading up to the system “crash” will still be in the recorded
memory (not overwritten) after the system has locked-up.
Stepping backwards in memory can usually uncover the se-
quence of operations that caused the problem. The Analyzer488
can also be set up to trigger on the occurrance of one or several
SRQs with both a post and pre-trigger assigned. In this way a
specified number of events can be captured before and after the
occurrance of an SRQ. The Analyzer488 also has comprehensive
search features allowing the capture buffer to be scanned for all
of the occurences of any event, including an SRQ.

the smart approach to instrumentation™

®

IOtech, Inc. 25971 Cannon Road Cleveland, Ohio 44146 (440) 439-4091 Fax (440) 439-4093

Some instruments have the capability of generating an SRQ for any
of several internal events. Usually an SRQ mask is sent to the
instrument to instruct it to generate an SRQ for only a selected
subset of those events. Some instruments, by default, will interrupt
the controller with an SRQ when an internal error is encountered
and not respond to any further bus transactions until the interrupt
is serviced. The next time your application program requests data
from that instrument, your system will fail. By inspecting the
Analyzer488 transaction recording working backward from the
end, it will be obvious that an SRQ was asserted by someone on the
bus and that it remained unserviced.

“My system occassionally locks up.”

This is another of those intermittent problems that can take a
long time to troubleshoot, especially if the mean time between
failures is several hours, days or months. As before, the best way
to approach the problem is to allow the Analyzer488 to record
all of the transactions occurring on the bus. When the number
of transactions goes beyond 32,767, the capture pointer will
wrap around and continue to record. The last 32,767 transac-
tions will always be stored in memory. When the system
crashes, the processing of IEEE bus transactions will probably
end also. With the last 32K transactions captured in memory, it
is easy to step back through the capture buffer and decipher the
sequence of operations that caused the crash.

One possible cause for an intermittent crash problem is the
asynchronous occurance of SRQs as discussed above. There may
be areas in your application program that do not react well to
being interrupted. Since the SRQ can happen at any time, it may
or may not occur during the processing of this sensitive area. But
the longer the system runs, the probability that the SRQ will

happen at exactly the wrong time increases. A sensitive area may
be a part of your code that uses a group of closely related
variables that are modified by the SRQ handler. For example,
three IEEE 488 counters are used to take readings from three
motion encoders. Each counter is programmed to generate an
SRQ when its count reaches 256. The SRQ handler reads all three
counters and stores them into three separate variables used later
by the main program. The main program has a loop which reads
the three variables, combines them with some calculation, and
sends commands to a motor controller. If the main program was
in the process of using the variables and an SRQ occurred (which
modifies all three variables), the main program may end up
using one old value and two new ones in its calculation.

One way to avoid this kind of problem is to disarm the auto-
matic SRQ vectoring during the processing of sensitive program
areas. IOtech’s Driver488 has several means by which to arm,
disarm and synchronize the servicing of SRQs to your program.

Another source of system malfunctions is from the instruments
themselves. Most of today’s complex instruments are micropro-
cessor controlled. The internal processor handles the collection
of data, the changing of programmable states, the monitoring of
trigger events, and the communication on the IEEE interface.
These instruments are actually computers, prone to all of the
same problems as any other computer.

It is possible that your instrument reacts improperly to a
perfectly good application program. The transaction report that
Analyzer488 prints out can be used to communicate instrument
problems to the manufacturer. The report is easy to read and
concisely describes the operation of the controller and the
response of the instrument.

